
 Arduino Profiling: An execu�on �me and CPU
 availability inves�ga�on
 Júlia Moura a .

 a Engineering School, Federal University of Minas Gerais, Minas Gerais, Brazil, julia.santos.moura.1201@gmail.com

	Abstract.	 As the world gets more connected the importance of IoT grows. A common
 microcontroller used as an Iot device is Arduino due its great �lexibility, small cost, and size.
 Although there are studies about this microcontroller, they do not deepen its execution time
 and CPU availability pro�iling, which is the main goal of this article. To do that two different
 methodologies were chosen to measure how long it took to execute 8 different functions, in
 which four of them had three different data sizes. The results of both methodologies were
 consistent and proved the good performance of Arduino. To measure the CPU availability a
 library was used, but its result was not conclusive.
	Keywords.	 Pro�iling, Measure Performance, Tracing performance analysis, Arduino, code,
 software, library, framework.

 1. Introduc�on
 Many applications built on embedded platforms
 are cheap, small, and with �lexible computer
 hardware. Mostly, such platforms are based on
 microcontrollers (MCUs), i.e., single-chip
 (micro)computers that have a goal to govern a
 speci�ic operation in an embedded system. One of
 the most popular MCU-based platforms is Arduino
 we build on in this paper.

 Especially in the area of more complex and critical
 applications, there is a need to identify key
 parameters of embedded systems to quantify
 parameters such as interrupt latency and response
 time, best/worst-case execution time, CPU/stack
 utilization, time spent in various operating modes
 (e.g., run, wait, stop, interrupt handling) or power
 consumption. Such an analysis can be done, e.g., by
 means of the so-called pro�iling.

 Some of Arduino's characteristics such as clock
 speed, communication parameters supported and
 I/O Connectivity have been analyzed in Swathi's
 work [1]; another work, by Suresh [2] investigates
 more deeply how is the execution time when an
 MCU executes different functions. Another useful
 information that can be pro�iled for Arduino is CPU
 availability since it can be useful to identify the
 consumed CPU time.

 There are many ways to pro�ile parameters like
 that, as explained by Patel [3]. It could have been
 done with dedicated hardware, but the chosen
 approach was the software one, following the
 example of Strasser [4] and avoiding software

 overhead.

 2. Research Methods
 2.1 Execu�on Time Profiling
 To measure the execution time it was important to
 de�ine a set of events that would be pro�iled. Those
 events needed to be varied in complexity to re�lect
 the different times needed by Arduino to perform
 those functions. It was also important, as
 highlighted by Suresh [2], to make the
 measurements with different amounts of data.

 Suresh [2] also in�luenced deeply on the chosen
 functions, which are shown above. But, Strasser's
 [4] work also had a great in�luence on it:

 ● Initialize variable (1)
 ● Invoke an empty function (2)
 ● Acquire and release a �ixed amount of

 memory (3)
 ● Create a vector of words (4)
 ● Perform string search on a vector of words

 (5)
 ● Execute three basic math functions: square

 root, cubic and degree to radian
 conversion (6)

 ● Sort data using qSort function (7)
 ● Search for the smaller path in a graph

 using Dijkstra algorithm. (8)

 Again, guided by Suresh's [4] methodology, the
 functions 4, 5, 7, and 8 were measured using
 different sizes of data, divided into three categories:
 small (S) with 10 units, medium (M) with 50 units,
 and large (L) with a 100.

 The data size was restricted like that due to
 memory issues presented by Arduino when vectors
 of strings with sizes bigger than one hundred were
 created.

 As shown in Strasser's [4] thesis, the main idea
 was to measure the time before and after the
 execution of the event and then subtract the found
 values to �ind the execution time.

 The �irst methodology was made with the 	micros	
 function. And, to avoid initialization overhead and
 latency the measure was made before and after a
 loop in which the given event was executed. Then,
 the found result was divided by the number of
 times the loop was executed (1000 times).

 In the second method, the measurement was made
 with the Time Pro�iler Library. Using the
	TIMEPROFILE_BEGIN	 , 	TIMEPROFILE_END,	 and
	TimePro�iler.getPro�ile	 functions. To obtain more
 reliable results the pro�iling was made on the loop
 function from Arduino.

 In both approaches, an Arduino Uno R3 was used
 with a cable USB-A/ USB-B and an Aspire A515-55
 computer. The materials are shown in more detail
 in 	Tab.	1	 .

	Tab.	1	-	 Materials used in the experiments.

 material detail image

 ARDUINO
 UNO R3

 Microcontroller:
 Atmega328P

 Minimum
 voltage: 5 V

 Maximum
 voltage: 12 V

 Operating
 voltage: 5V

 ASPIRE
 A515-55

 Processor:
 Intel(R)
 Core(TM)
 i5-1035G1 CPU
 @ 1.00GHz 1.19
 GHz

 RAM: 8,00 GB
 (usable: 7,78 GB)

 System type:
 operational
 system of 64
 bits, processor
 based in x64

 Cable USB-A/USB-B

 53 cm

 All the codes were implemented on Arduino IDE
 version 2.0.4 for Windows 64 bits.

 2.2 CPU Availability Profiling
 Another aspect of Arduino that was analyzed is CPU
 availability, which says where the time is spent on
 the CPU. Normally, a development environment
 uses a pro�iling hardware to sample the program
 counter of the investigated hardware on a regular
 basis and counts when it lands in a range of
 addresses (bins) previously determined.

 But, this is not possible on Arduino since there is
 not enough RAM to divide the program space into
 many bins and have a dedicated counter for each
 one of them. To solve that issue Dudley [5]
 developed a library that manually de�ines a bin for
 samples of code. This library was used to pro�ile
 the cpu availability of the functions mentioned
 before.

 The sample code from Dudley [5] prints between
 the 3rd and 4th seconds each of the de�ined bins
 and the number of times they were hit during the
 1-minute sample time. His code was modi�ied to
 invoke each one of the events pro�iled by this
 article at bin number seven.

 3. Discussion of Results
 3.1 Execu�on Time
 In 	Tab.	 	2	 all the pro�iled events and their
 correspondent execution time obtained with the
 two methodologies explained before are shown.

 The �irst methodology (A), is the one in which the
	micros	 function is invoked before and after a loop
 that executes the event and the �inal time is
 calculated. The second method (B), is the one in
 which the execution time was pro�iled using the
 TimePro�iler library.

	Tab.	2	-	 Results obtained of the time of execution for
 each pro�iled event with the two methodologies.

 function time A (ms) time B (ms)

 Initialize variable
 (1)

 4 0.012

 Invoke an empty
 function (2)

 0 0.012

 Acquire and
 release a �ixed
 amount of
 memory (3)

 0 0.012

 Create a vector of
 words (4)

 S: 1

 M: 9

 L: 9

 S: 1.024

 M: 5.748

 L: 9

 Perform string S: 0 S: 0.012

 search on a
 vector of words
 (5)

 M: 0

 L: 0

 M: 0.012

 L: 0.008

 Execute three
 basic math
 functions: square
 root, cubic and
 degree to radian
 conversion (6)

 0 0.012

 Sort data using
 qSort function (7)

 S: 0

 M: 0

 L: 0

 S: 0.112

 M: 0.448

 L: 0.820

 Search for the
 smaller path in a
 graph using
 Dijkstra
 algorithm. (8)

 S: 0

 M: 0

 L: 0

 S: 0.012

 M: 0.012

 L: 0.012

 Based on the results from the functions 2, 3, 5, 6, 7,
 and 8 can be notice that the microseconds scale is
 not precise enough to measure the events execution
 time, since to all of those functions the result was
 0. It indicates that the execution time is on the scale
 of nanoseconds, but Arduino does not provide a
 function to measure it.

 That is the main reason why the second approach
 was chosen, since, even though it is also on the
 microseconds scale it is more precise because it
 provides the decimal parts of the measure.

 With that, it is possible to validate that the results
 from functions 2, 3, 5, 6, 7, and 8 are correct. Since
 the obtained values for those functions with
 methodology B are always smaller than one
 microsecond. So, for those cases, both
 methodologies provided similar results.

 It is important to highlight that as approach B is
 more precise it is noticeable that in function 7 the
 execution time varied according to the sample size,
 but it was always smaller than 1 microsecond. That
 level of analysis is not possible with methodology
 A.

 Some results diverged between the two
 methodologies. In function 1, the result of the �irst
 approach is weird, since it takes 4 microseconds to
 just create a variable. But, in practice, this event is
 extremely similar to function 3, in which an
 amount of memory is acquired.

 The result for the same function, 1, with
 methodology B is more consistent. Since it takes
 0.012 microseconds, as occurs in function 3.

 Another measurement divergency is from function
 4 with size M, in which a vector of 50 words is
 created. With methodology A it took 9
 microseconds to run, while in methodology B the
 time was smaller: 5.478 microseconds. The reason

 for that happening was not identi�ied.

 This difference did not occur for the other sizes.
 For 10 words (S) in the �irst method, the time was 1
 microsecond, and on the second one 1.024
 microseconds, which emphasizes that the 	micros	
 function is not precise enough. But for the largest
 sample, 100 words, the result was exactly the same:
 9 microseconds.

 3.2 CPU Availability
 Moving to the second point of analysis: the CPU
 availability, we have on 	Tab.		3	 the amount of time the
 range of address of each function (bin) was hit during
 its execution:

	Tab.	3	-	 Results obtained of the cpu availability for
 each function with the Dudley library [5].

 function number of hits on
 the bin

 Initialize variable (1) 0

 Invoke an empty
 function (2)

 0

 Acquire and release a
 �ixed amount of
 memory (3)

 0

 Create a vector of
 words (4)

 S: 65

 M: 335

 L: 611

 Perform string search
 on a vector of words
 (5)

 S: 0

 M: 0

 L: 0

 Execute three basic
 math functions:
 square root, cubic and
 degree to radian
 conversion (6)

 0

 Sort data using qSort
 function (7)

 S: 5

 M: 17

 L: 34

 Search for the smaller
 path in a graph using
 Dijkstra algorithm. (8)

 S: 0

 M: 0

 L: 0

 The result was 0 for the following functions: 1, 2, 3,
 5, 6, and 8. As the execution time of those functions
 is close to 0 it is possible that those functions
 execute so fast that the library was not able to
 pro�ile them.

 Even though function 7 also has an execution time
 small, it is closer to one microsecond when

 compared to the functions mentioned before. This
 time was long enough for the event to be pro�iled
 and is possible to notice the consistency in the
 results, which increases as the sample size grows.

 The same thing happened to function 3 and is
 possible to notice the number of times the
 functions are hit grows almost linearly with their
 size:

	Fig.	 	1	 	-	 Size of the function and the number of times
 they are hit. In green function 4 and in purple
 function 7.

 4. Conclusion
 Arduino is a cheap, small, and �lexible computer
 hardware that is able to connect with many sensors
 to collect different types of data. Because of that it
 is a great option to be used as an IoT device. That
 justi�ies the purpose of this work of pro�iling its
 execution time and CPU availability.

 Two different methodologies were used to measure
 the time aspect and both of them offered consistent
 results. Even though the functions varied in
 complexity and size to most of them the execution
 time was smaller than 1 microsecond. This is a
 great indicator of good performance since the
 functions are executed pretty fast.

 The measured CPU availability results were not
 conclusive because for the most part of the
 functions, due to their small execution time, they
 ran so fast that the Dudley library [5] could not
 measure how many times they hit the selected
 range of addresses from the functions.

 4. Acknowledgments
 The author would like to thank Ing. Josef Strnadel
 from the Institute of Czech-Brazilian Academic
 Cooperation for all his help in the pro�iling of
 Arduino aspects and in the writing of this paper.

 5. References
 [1] Swathi K. T., Sandeep T. U, Ramani A. R.,

 Performance Analysis of Microcontrollers Used
 In Iot Technology. 	International	 	Journal	 	of	
	Scienti�ic	 	Research	 	in	 	Science,	 	Engineering	 	and	
	Technology.	 2018; 4: 6.

 [2] Suresh A. J., Siriram S.Power Pro�iling and
 Analysis of Code Obfuscation for Embedded
 Devices. 	IEEE	 	India	 	Council	 	International	
	Conference	(INDICON)	 . 2020; 1: 6.

 [3] Patel R, Rajawat A. A survey of embedded
 software pro�iling methodologies. 	International	
	Journal	 	of	 	Embedded	 	Systems	 	and	 	Applications	 .
 2011; 2: 22.

 [4] Strasser F. J., 	Pro�iling	 	of	 	Real-Time	
	Operating	 	System	 	Services	 	for	 	Singlecore	 	and	
	Multicore.	 Graz University of Technology. Graz;
 2014. 101.

 [5] Dudley W. F., 	Pro�iling	 	Arduino	 	Code.	
 William Dudley Projects. 2023.
 https://www.dudley.nu/arduino_pro�iling/ .

https://www.dudley.nu/arduino_profiling/

